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SPLITTING CODE INTO FILES

When the code is large, it should be split into files.

Each file typically containing a set of related functions.

@ All the constants and functions prototypes should be declared in a
header file which is included in all code files.

The main() function should be put in a separate file: this allows the
other functions to be used by different programs.
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EXAMPLE

We can use the matrix functions to read a matrix and invert it:

#include "matrix.h"

int main()

{
float A[N]I[N];
float invA[N] [N];
float det;
int n;

read_matrix(A, &n);

det = inv_matrix(A, invA, n);
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EXAMPLE

if (is_zero(det))
printf ("Matrix not invertible\n");

else {
printf ("Determinant = %5.2f\n", det);
output_matrix("Inverse of A =\n", invA, n);
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EXAMPLES

With a little more coding, we can also use it to:
@ Check linear independence of vectors

@ Solve a system of linear equations

Given a linear subspace, find an orthogonal basis for it.

And many other matrix operations.
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COMPILING USING A FILE

o With lots of files to compile, it is easier to put the compilation
command in a file and execute the file.

o For example, we put the following in a file:
gcc -o matrix matrix-main.c matrix-inv.c matrix-ops.c
matrix—-det.c matrix-io.c -std=c99

o To compile, we can now execute the file using:
sh <filename>
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FiBoNACccl NUMBERS

DEFINITION

Fibonacci numbers are defined as follows: Fp =1 = F;, and
Fo=F, 1+ F,_o for n>1.

We can write a function to compute Fibonacci numbers in two ways.
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MEeTHOD I: UsING LoopPs

int Fib_loop(int n)

{
int F[N]; // stores Fibonacci sequence
F[0] = 1; // first two values
F[1] = 1;
for (int m = 2; m <= n; m++)
Flm] = Flm-1] + F[m-2];
return F[n];
}
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MEgETHOD II: USING RECURSION

int Fib_rec(int n)

{
if ((n==0) || (n == 1))
return 1;
return Fib_rec(n-1) + Fib_rec(n-2);
}
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WHY 1S METHOD I MUCH FASTER?

@ The recursive function computes a value multiple times.

o For example, both Fib_rec(n) and Fib_rec(n-1) compute
Fib_rec(n-2).

e This is wasteful!
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IMPROVING METHOD 11

int F[N]; // stores Fibonacci sequence
int m = 1; // value until which the sequence is computed

int Fib_rec_imp(int n)
{
if ((n==0) || (mn==1)) {
Fln] = 1; // set first two numbers
return 1;

if (n > m) { // number not already computed
F[n] = Fib_rec_imp(n-1) + Fib_rec_imp(n-2); // comput:
m =n; // reset m

return F[n]; // return the number
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