
ESc 101: Fundamentals of Computing

Lecture 31

Mar 29, 2010

Lecture 31 () ESc 101 Mar 29, 2010 1 / 13

Splitting Code into Files

When the code is large, it should be split into files.

Each file typically containing a set of related functions.

All the constants and functions prototypes should be declared in a
header file which is included in all code files.

The main() function should be put in a separate file: this allows the
other functions to be used by different programs.

Lecture 31 () ESc 101 Mar 29, 2010 3 / 13

Example

We can use the matrix functions to read a matrix and invert it:

#include "matrix.h"

int main()

{

float A[N][N];

float invA[N][N];

float det;

int n;

read_matrix(A, &n);

det = inv_matrix(A, invA, n);

Lecture 31 () ESc 101 Mar 29, 2010 4 / 13

Example

if (is_zero(det))

printf("Matrix not invertible\n");

else {

printf("Determinant = %5.2f\n", det);

output_matrix("Inverse of A =\n", invA, n);

}

}

Lecture 31 () ESc 101 Mar 29, 2010 5 / 13

Examples

With a little more coding, we can also use it to:

Check linear independence of vectors

Solve a system of linear equations

Given a linear subspace, find an orthogonal basis for it.

And many other matrix operations.

Lecture 31 () ESc 101 Mar 29, 2010 6 / 13

Compiling Using a File

With lots of files to compile, it is easier to put the compilation
command in a file and execute the file.

For example, we put the following in a file:
gcc -o matrix matrix-main.c matrix-inv.c matrix-ops.c

matrix-det.c matrix-io.c -std=c99

To compile, we can now execute the file using:
sh <filename>

Lecture 31 () ESc 101 Mar 29, 2010 7 / 13

Fibonacci Numbers

Definition

Fibonacci numbers are defined as follows: F0 = 1 = F1, and
Fn = Fn−1 + Fn−2 for n > 1.

We can write a function to compute Fibonacci numbers in two ways.

Lecture 31 () ESc 101 Mar 29, 2010 9 / 13

Method I: Using Loops

int Fib_loop(int n)

{

int F[N]; // stores Fibonacci sequence

F[0] = 1; // first two values

F[1] = 1;

for (int m = 2; m <= n; m++)

F[m] = F[m-1] + F[m-2];

return F[n];

}

Lecture 31 () ESc 101 Mar 29, 2010 10 / 13

Method II: Using Recursion

int Fib_rec(int n)

{

if ((n == 0) || (n == 1))

return 1;

return Fib_rec(n-1) + Fib_rec(n-2);

}

Lecture 31 () ESc 101 Mar 29, 2010 11 / 13

Why is Method I Much Faster?

The recursive function computes a value multiple times.

For example, both Fib rec(n) and Fib rec(n-1) compute
Fib rec(n-2).

This is wasteful!

Lecture 31 () ESc 101 Mar 29, 2010 12 / 13

Improving Method II

int F[N]; // stores Fibonacci sequence

int m = 1; // value until which the sequence is computed

int Fib_rec_imp(int n)

{

if ((n == 0) || (n == 1)) {

F[n] = 1; // set first two numbers

return 1;

}

if (n > m) { // number not already computed

F[n] = Fib_rec_imp(n-1) + Fib_rec_imp(n-2); // compute it

m = n; // reset m

}

return F[n]; // return the number

}
Lecture 31 () ESc 101 Mar 29, 2010 13 / 13

	Making Code Libraries
	More Recursive Functions

