ESc 101: FUNDAMENTALS OF COMPUTING

Lecture 31

Mar 29, 2010

LECTURE 31 () ESc 101

SPLITTING CODE INTO FILES

When the code is large, it should be split into files.

Each file typically containing a set of related functions.

@ All the constants and functions prototypes should be declared in a
header file which is included in all code files.

The main() function should be put in a separate file: this allows the
other functions to be used by different programs.

LECTURE 31 () ESc 101 MAR 29, 2010 3/13

EXAMPLE

We can use the matrix functions to read a matrix and invert it:

#include "matrix.h"

int main()

{
float A[N]I[N];
float invA[N] [N];
float det;
int n;

read_matrix(A, &n);

det = inv_matrix(A, invA, n);

LECTURE 31 () ESc 101 MAR 29, 2010 4 /13

EXAMPLE

if (is_zero(det))
printf ("Matrix not invertible\n");

else {
printf ("Determinant = %5.2f\n", det);
output_matrix("Inverse of A =\n", invA, n);

LECTURE 31 () ESc 101 MAR 29, 2010 5 /13

EXAMPLES

With a little more coding, we can also use it to:
@ Check linear independence of vectors

@ Solve a system of linear equations

Given a linear subspace, find an orthogonal basis for it.

And many other matrix operations.

LECTURE 31 () ESc 101 MAR 29, 2010

6 /13

COMPILING USING A FILE

o With lots of files to compile, it is easier to put the compilation
command in a file and execute the file.

o For example, we put the following in a file:
gcc -o matrix matrix-main.c matrix-inv.c matrix-ops.c
matrix—-det.c matrix-io.c -std=c99

o To compile, we can now execute the file using:
sh <filename>

LECTURE 31 () ESc 101 MAR 29, 2010 7/ 13

FiBoNACccl NUMBERS

DEFINITION

Fibonacci numbers are defined as follows: Fp =1 = F;, and
Fo=F, 1+ F,_o for n>1.

We can write a function to compute Fibonacci numbers in two ways.

LECTURE 31 () ESc 101

MaAR 29, 2010 9 /13

MEeTHOD I: UsING LoopPs

int Fib_loop(int n)

{
int F[N]; // stores Fibonacci sequence
F[0] = 1; // first two values
F[1] = 1;
for (int m = 2; m <= n; m++)
Flm] = Flm-1] + F[m-2];
return F[n];
}

LECTURE 31 () ESc 101 MAR 29, 2010

10 / 13

MEgETHOD II: USING RECURSION

int Fib_rec(int n)

{
if ((n==0) || (n == 1))
return 1;
return Fib_rec(n-1) + Fib_rec(n-2);
}

LECTURE 31 () ESc 101 MAaR 29, 2010 11 /13

WHY 1S METHOD I MUCH FASTER?

@ The recursive function computes a value multiple times.

o For example, both Fib_rec(n) and Fib_rec(n-1) compute
Fib_rec(n-2).

e This is wasteful!

LECTURE 31 () ESc 101 MaR 29, 2010 12 /13

IMPROVING METHOD 11

int F[N]; // stores Fibonacci sequence
int m = 1; // value until which the sequence is computed

int Fib_rec_imp(int n)
{
if ((n==0) || (mn==1)) {
Fln] = 1; // set first two numbers
return 1;

if (n > m) { // number not already computed
F[n] = Fib_rec_imp(n-1) + Fib_rec_imp(n-2); // comput:
m =n; // reset m

return F[n]; // return the number

LECTURE 31 () ESc 101

	Making Code Libraries
	More Recursive Functions

